Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

نویسندگان

  • Anita I. Kishore
  • Michael R. Mayer
  • James H. Prestegard
چکیده

Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3' in ribose) and one highly enriched site (C1' in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C-13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and NMR of RNA with selective isotopic enrichment in the bases.

Efficient syntheses of pyrimidine and purine nucleosides and nucleotides with selective 13C enrichment in the base moieties are described. Uridine and cytidine are labeled at position C6 and adenosine and guanosine are labeled at position C8. The selectively labeled nucleosides were converted to nucleoside triphosphates and used with in vitro transcription to synthesize labeled RNA. Isotope-edi...

متن کامل

Structural Characterization of Hydrothermal Carbon Spheres by Advanced Solid-State MAS 13 C NMR Investigations

The local structure of carbon spheres obtained via the hydrothermal carbonization process is characterized by using a combination of advanced solid-state 13C NMR techniques. Glucose was chosen as the starting product because it offers the possibility of 13C isotopic enrichment and is regarded as a model compound for more complex polysaccharides and biomass, as reported in recent studies. A numb...

متن کامل

Isotope Labeling Methods for Protein Dynamics Studies

Protein structure determination by solution NMR spectroscopy has long relied on the uniform stable isotopic enrichment with 13C and 15N to alleviate resonance overlap and to allow multiple distance and angular restraints, at as many atomic sites as possible, to facilitate computing the optimal three-dimensional structural model.(1) Recently, the optimization of these labeling techniques has inc...

متن کامل

Isolation and purification of deoxyribonucleosides from 90% 13C-enriched DNA of algal cells and their characterization by 1H and 13C NMR.

13C-enriched deoxyribonucleosides have been isolated from the DNA of Algal cells grown in an atmosphere of 90% 13C-labelled carbon dioxide. The 13C enriched DNA was quantitatively hydrolysed with DNase I, snake venom phosphodiesterase I and alkaline phosphatase of intestinal mucosa. The resulting deoxyribonucleosides were separated by preparative reversed-phase high pressure liquid chromatograp...

متن کامل

Applicability of GPC, GC-MS and 13C NMR techniques and DFRC method in comparative structural studies of Lignin

In this research, the characteristics of CMP dioxane lignin (hardwood origin) and soda bagasse lignin (ethanol soluble fraction) and dioxane lignin of bagasse were studied using gel permeation chromatography, gas chromatography-mass spectrometry and 13C NMR spectroscopy and DFRC degradation procedure. The results indicated that the main structural units in lignins are phenyl propane skeletons b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005